
Multiple Integrals and Probability: A Numerical
Exploration

March 30, 2012

The homework questions are due in class on Monday 9 April

1 Probability

Definition 1.1. f : U ⊂ R2 → R+ is a probability density function if∫ ∫
U

fdA = 1

Definition 1.2. If f is a probability density function which takes the set U ⊂ R2,
then the probability of events in the set W ⊂ U occurring is

P (W ) =

∫ ∫
W

fdA.

Example 1.1. The joint density for it to snow x inches tomorrow and for Kelly to
win y dollar in the lottery tomorrow is given by

f =
c

(1 + x)(100 + y)

for
x, y ∈ [0, 100]× [0, 100]

and f = 0 otherwise. Find c.

Definition 1.3. Suppose X is a random variable with probability density function
f1(x) and Y is a random variable with a probability density function f2(y). Then X
and Y are independent random variables if their joint density function is

f(x, y) = f1(x)f2(y).
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Example 1.2. The probability it will snow tomorrow and the probability Kelly will
win the lottery tomorrow are independent random variables.

Definition 1.4. If f(x, y) is a probability density function for the random variables
X and Y , the X mean is

µ1 = X̄ =

∫ ∫
xfdA

and the Y mean is

µ2 = Ȳ =

∫ ∫
yfdA.

Remark 1.1. The X mean and the Y mean are the expected values of X and Y.

Definition 1.5. If f(x, y) is a probability density function for the random variables
X and Y , the X variance is

σ2
1 = (X − X̄)2 =

∫ ∫
(x− X̄)2fdA

and the Y variance is

σ2
2 = (Y − Ȳ )2 =

∫ ∫
(y − Ȳ )2fdA.

Definition 1.6. The standard deviation is defined to be the square root of the vari-
ance.

Example 1.3. Find an expression for the probability that it will snow more than
1.1 times the expected snowfall and also that Kelly will win more than 1.2 times the
expected amount in the lottery.

Homework question 1: A class is graded on a curve. It is assumed that the class
is a representative sample of the population, the probability density function for the
numerical score x is given by

f(x) = C exp

(
−(x− µ)2

2σ2

)
.

For simplicity we assume that x can take on the values −∞ and∞, though in actual
fact the exam is scored from 0 to 100.

a) Determine C using results from your previous homework.
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b) Suppose there are 240 students in the class and the mean and standard devi-
ation for the class is not reported. As an enterprising student, you poll 60 of
your fellow students (we shall suppose they are selected randomly). You find
that the mean for these 60 students is 55% and the standard deviation is 10%.
Use the Student’s t distribution http://en.wikipedia.org/wiki/Student%

27s_t-distribution to estimate the 90% confidence interval for the actual
sample mean. Make a sketch of the t-distribution probability density function
and shade the region which corresponds to the 90% confidence interval for the
sample mean.1

Remark Fortunately, all the students are hard working, so the possibility of a
negative score, although possible, is extremely low, and so we neglect it to make the
above computation easier.

2 Riemann Integration

Recall that we can approximate integrals by Riemann sums. There are many integrals
one cannot evaluate analytically, but for which a numerical answer is required. In
this section, we shall explore a simple way of doing this on a computer. Suppose we
want to find

I2d =

∫ 1

0

∫ 4

0

x2 + 2y2dydx

If we do this analytically we find

I2d = 44.

Let us suppose we have forgotten how to integrate, and so we do this numerically.
We can do so using the following Matlab code:

% A program to approximate an integral

clear all; format compact; format short;

nx=1000; % number of points in x

xend=1; % last discretization point

xstart=0; % first discretization point

1The Student’s t distribution is implemented in many numerical packages such as Maple, Math-
ematica, Matlab, R, Sage etc., so if you need to use to obtain numerical results, it is helpful to use
on of these packages.
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dx=(xend-xstart)/(nx-1); % size of each x sub-interval

ny=4000; % number of points in y

yend=4; % last discretization point

ystart=0; % first discretization point

dy=(yend-ystart)/(ny-1); % size of each y sub-interval

% create vectors with points for x and y

for i=1:nx

x(i)=xstart+(i-1)*dx;

end

for j=1:ny

y(j)=ystart+(j-1)*dy;

end

% Approximate the integral by a sum

I2d=0;

for i=1:nx

for j=1:ny

I2d=I2d+(x(i)^2+2*y(j)^2)*dy*dx;

end

end

% print out final answer

I2d

We can do something similar in three dimensions. Suppose we want to calculate

I3d =

∫ 1

0

∫ 1

0

∫ 4

0

x2 + 2y2 + 3z2dzdydx.

Analytically we find that
I3d = 68

Homework question 2:

a) Modify the Matlab code to perform the three dimensional integral.

b) Try and determine how the accuracy of either the two or three dimensional
method varies as the number of subintervals is changed.
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3 Monte Carlo Integration

2 It is possible to extend the above integration schemes to higher and higher dimen-
sional integrals. This can become computationally intensive and an alternate method
of integration based on probability is often used. The method we will discuss is called
the Monte Carlo method. The idea behind it is based on the concept of the average
value of a function, which you learned in single-variable calculus. Recall that for a
continuous function f(x), the average value f̄ of f over an interval [a, b] is defined
as

f̄ =
1

b− a

∫ b

a

f(x) dx . (1)

The quantity b − a is the length of the interval [a, b], which can be thought of
as the “volume” of the interval. Applying the same reasoning to functions of two or
three variables, we define the average value of f(x, y) over a region R to be

f̄ =
1

A(R)

∫∫
R

f(x, y) dA , (2)

where A(R) is the area of the region R, and we define the average value of f(x, y, z)
over a solid S to be

f̄ =
1

V (S)

∫∫∫
S

f(x, y, z) dV , (3)

where V (S) is the volume of the solid S. Thus, for example, we have∫∫
R

f(x, y) dA = A(R)f̄ . (4)

The average value of f(x, y) over R can be thought of as representing the sum of
all the values of f divided by the number of points in R. Unfortunately there are
an infinite number (in fact, uncountably many) points in any region, i.e. they can
not be listed in a discrete sequence. But what if we took a very large number N of
random points in the region R (which can be generated by a computer) and then

2This section is taken from Chapter 3 of Vector Calculus by M. Corral which is available at
http://www.mecmath.net/ and where Sage programs for doing Monte Carlo integration can be
found.
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took the average of the values of f for those points, and used that average as the
value of f̄? This is exactly what the Monte Carlo method does. So in formula (4)
the approximation we get is

∫∫
R

f(x, y) dA ≈ A(R)f̄ ± A(R)

√
f 2 − (f̄)2

N
, (5)

where

f̄ =

∑N
i=1 f(xi, yi)

N
and f 2 =

∑N
i=1(f(xi, yi))

2

N
, (6)

with the sums taken over the N random points (x1, y1), . . ., (xN , yN). The ± “error
term” in formula (5) does not really provide hard bounds on the approximation.
It represents a single standard deviation from the expected value of the integral.
That is, it provides a likely bound on the error. Due to its use of random points,
the Monte Carlo method is an example of a probabilistic method (as opposed to
deterministic methods such as the Riemann sum approximation method, which use
a specific formula for generating points).

For example, we can use formula (5) to approximate the volume V under the
surface z = x2 + 2y2 over the rectangle R = [0, 1] × [0, 4]. Recall that the actual
volume is 44. Below is a Matlab code that calculates the volume using Monte Carlo
integration

% A program to approximate an integral using the Monte Carlos method

% This program can be made much faster by using Matlab’s matrix and vector

% operations, however to allow easy translation to other languages we have

% made it as simple as possible.

Numpoints=512; % number of random points

I2d=0; % Initialize value

I2dsquare=0; % initial variance

for n=1:Numpoints

% generate random number drawn from a uniform distribution on (0,1)

x=rand(1);

y=rand(1)*4;

I2d=I2d+x^2+2*y^2;
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I2dsquare=I2dsquare+(x^2+2*y^2)^2;

end

% we sclae the integral by the total area and divide by the number of

% points used

I2d=I2d*4/Numpoints

% we also output an estimated error

I2dsquare=I2dsquare*4/Numpoints;

EstimError=4*sqrt( (I2d^2-I2dsquare)/Numpoints)

The results of running this program with various numbers of random points are
shown below:

N = 16: 41.3026 +/- 30.9791

N = 256: 47.1855 +/- 9.0386

N = 4096: 43.4527 +/- 2.0280

N = 65536: 44.0026 +/- 0.5151

As you can see, the approximation is fairly good. As N → ∞, it can be shown
that the Monte Carlo approximation converges to the actual volume (on the order
of O(

√
N), in computational complexity terminology).

In the above example the region R was a rectangle. To use the Monte Carlo
method for a nonrectangular (bounded) regionR, only a slight modification is needed.
Pick a rectangle R̃ that encloses R, and generate random points in that rectangle as
before. Then use those points in the calculation of f̄ only if they are inside R. There
is no need to calculate the area of R for formula (5) in this case, since the exclusion
of points not inside R allows you to use the area of the rectangle R̃ instead, similar
to before.

For instance, one can show that the volume under the surface z = 1 over the
nonrectangular region R = {(x, y) : 0 ≤ x2 + y2 ≤ 1} is π. Since the rectangle R̃ =
[−1, 1] × [−1, 1] contains R, we can use a similar program to the one we used, the
largest change being a check to see if y2 + x3 ≤ 1 for a random point (x, y) in
[−1, 1]× [−1, 1]. A Matlab code listing which demonstrates this is below:

% This program can be made much faster by using Matlab’s matrix and vector

% operations, however to allow easy translation to other languages we have

% made it as simple as possible.

Numpoints=65536; % number of random points

I2d=0; % Initialize value
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I2dsquare=0; % initial variance

for n=1:Numpoints

% generate random number drawn from a uniform distribution on (0,1) and

% scale this to (-1,1)

x=2*rand(1)-1;

y=2*rand(1) -1;

if ((x^2+y^2) <1)

I2d=I2d+1;

I2dsquare=I2dsquare+1;

end

end

% we scale the integral by the total area and divide by the number of

% points used

I2d=I2d*4/Numpoints

% we also output an estimated error

I2dsquare=I2dsquare*4/Numpoints;

EstimError=4*sqrt( (I2d^2-I2dsquare)/Numpoints)

The results of running the program with various numbers of random points are shown
below:

N = 16: 3.5000 +/- 2.9580

N = 256: 3.2031 +/- 0.6641

N = 4096: 3.1689 +/- 0.1639

N = 65536: 3.1493 +/- 0.0407

To use the Monte Carlo method to evaluate triple integrals, you will need to
generate random triples (x, y, z) in a parallelepiped, instead of random pairs (x, y)
in a rectangle, and use the volume of the parallelepiped instead of the area of a
rectangle in formula (5). For a more detailed discussion of numerical integration
methods, please take a further course in mathematics such as Math 371, Math 471
or Math 472.

Homework Question 3

a) Write a program that uses the Monte Carlo method to approximate the double
integral

∫∫
R

exy dA, where R = [0, 1] × [0, 1]. Show the program output for

N = 10, 100, 1000, 10000, 100000 and 1000000 random points.
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b) Write a program that uses the Monte Carlo method to approximate the triple
integral

∫∫∫
S

exyz dV , where S = [0, 1]× [0, 1]× [0, 1]. Show the program output

for N = 10, 100, 1000, 10000, 100000 and 1000000 random points.

c) Use the Monte Carlo method to approximate the volume of a sphere of radius
1.

4 Parallel Monte Carlo Integration

As you may have noticed, the algorithms are simple, but can require very many grid
points to become accurate. It is therefore useful to run these algorithms on a parallel
computer. We will demonstrate a parallel monte Carlo calculation of π. Before we
can do this, we need to learn how to use a parallel computer. We shall use Trestles
located at the San Diego supercomputing center. Information on this computer is
available at: http://www.sdsc.edu/us/resources/trestles/

4.1 MPI

Before we can do Monte Carlo integration, we need to learn a little about paral-
lel programming. A copy of the current standard MPI standard can be found at
http://www.mpi-forum.org/. It allows for parallelization of Fortran, C and C++
programs. There are newer parallel programming languages such as Co-Array For-
tran (CAF) and Unified Parallel C (UPC) which allow the programmer to view
memory as a single addressable space even on a distributed memory machine. How-
ever, computer hardware limitations imply that most of the programming concepts
used when writing MPI programs will be required to write programs in CAF and
UPC. Compiler technology for these languages is also not as well developed as
compiler technology for older languages such as Fortran and C, so at the present
time, Fortran and C dominate high performance computing. An introduction to
the essential concepts required for writing and using MPI programs can be found
at http://www.shodor.org/refdesk/Resources/Tutorials/. More information
on MPI can be found in Gropp, Lusk and Skjellum3, Gropp, Lusk and Thakur4

and at https://computing.llnl.gov/tutorials/mpi/. There are many resources
available online, however once the basic concepts have been mastered, what is most

3Using MPI MIT Press(1999)
4Using MPI 2 MIT Press (1999)
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useful is an index of MPI commands, usually a search engine will give you sources
of listings, however we have found the following sites useful:

• http://publib.boulder.ibm.com/infocenter/zos/v1r13/index.jsp?topic=

%2Fcom.ibm.zos.r13.fomp200%2Fipezps00172.htm

• http://www.open-mpi.org/doc/v1.4/

Homework Question 4

a) What does MPI stand for?

b) Please read the tutorials at http://www.shodor.org/refdesk/Resources/

Tutorials/BasicMPI/ and at https://computing.llnl.gov/tutorials/mpi/,
then explain what the following commands do:

• USE mpi or INCLUDE ’mpif.h’

• MPI INIT

• MPI COMM SIZE

• MPI COMM RANK

• MPI FINALIZE

c) What is the version number of the current MPI standard?

d) Try to understand the Hello World program in listing 7. Run the program in
listing 7 on 32 and 64 MPI processes5. Put the output of each run in your
solutions, the output will be in a file of the form
job output

An example makefile to compile this on Trestles is in listing 8. An example
submission script is in listing 9. On Trestles, there is a maximum of 32 cores
per node, so if more than 32 MPI processes are required, one needs to change
the number of nodes as well. The total number of cores required is equal to the
number of nodes multiplied by the number of processes per node. To change
the number of MPI processes that the program will run on from 32 to 64,
change
nodes=1:ppn=32

to

5One can run this program on many more than 64 processes, however, the output becomes quite
excessive
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nodes=2:ppn=32

and also change the submission script from
mpirun rsh -np 32 -hostfile $PBS NODEFILE helloworld

to
mpirun rsh -np 64 -hostfile $PBS NODEFILE helloworld.

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
!
!
! PURPOSE
!
! This program uses MPI to p r in t h e l l o world from a l l a v a i l a b l e
! p r o c e s s e s
!
! . . Parameters . .
!
! . . S ca l a r s . .
! myid = proce s s id
! numprocs = t o t a l number o f MPI p ro c e s s e s
! i e r r = e r r o r code
!
! . . Arrays . .
!
! . . Vectors . .
!
! REFERENCES
! http :// en . wik iped ia . org /wik i /OpenMP
!
! ACKNOWLEDGEMENTS
! The program below was modi f ied from one ava i l a b l e at the i n t e r n e t
! address in the r e f e r e n c e s . This i n t e r n e t address was l a s t checked
! on 30 December 2011
!
! ACCURACY
!
! ERROR INDICATORS AND WARNINGS
!
! FURTHER COMMENTS
!
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! External r ou t i n e s r equ i r ed
!
! External l i b r a r i e s r equ i r ed
! MPI l i b r a r y

PROGRAM he l l o 90
USE MPI
INTEGER( kind=4) : : myid , numprocs , i e r r

CALL MPI INIT( i e r r )
CALL MPI COMM SIZE(MPI COMMWORLD, numprocs , i e r r )
CALL MPI COMM RANK(MPI COMMWORLD, myid , i e r r )

PRINT∗ , ’ He l lo World from proce s s ’ , myid
CALL MPI BARRIER(MPI COMMWORLD, i e r r )
IF ( myid == 0 ) THEN

PRINT∗ , ’ There are ’ , numprocs , ’ MPI p ro c e s s e s ’
END IF
CALL MPI FINALIZE( i e r r )
END PROGRAM

Listing 1: A Fortran program which demonstrates parallelizm using MPI.

#de f i n e the compl ier
COMPILER = mpif90
# compi lat ion s e t t i ng s , opt imizat ion , p r e c i s i on , p a r a l l e l i z a t i o n

11



FLAGS = −O0

# l i b r a r i e s
LIBS =
# source l i s t f o r main program
SOURCES = he l l owor ld . f90

t e s t : $ (SOURCES)
${COMPILER} −o he l l owor ld $ (FLAGS) $ (SOURCES)

c l ean :
rm ∗ . o

c lobber :
rm he l l owor ld

Listing 2: An example makefile for compiling the helloworld program in listing 7.

#!/ bin /bash
# the queue to be used .
#PBS −q normal
# sp e c i f y your p r o j e c t a l l o c a t i o n
#PBS −A mia122
# number o f nodes and number o f p r o c e s s o r s per node requested
#PBS − l nodes=1:ppn=32
# requested Wall−c l ock time .
#PBS − l wa l l t ime =00:05:00
# name o f the standard out f i l e to be ”output− f i l e ” .
#PBS −o job output
# name o f the job
#PBS −N MPI Hello
# Email address to send a n o t i f i c a t i o n to , change ” youremai l ” appropr i a t e l y
#PBS −M youremail@umich . edu
# send a n o t i f i c a t i o n f o r job abort , begin and end
#PBS −m abe
#PBS −V
cd $PBS O WORKDIR #change to the working d i r e c t o r y
mpirun rsh −np 32 −h o s t f i l e $PBS NODEFILE he l l owor ld

Listing 3: An example submission script for use on Trestles.

We now examine a Fortran program for calculating π. These programs are taken
from http://chpc.wustl.edu/mpi-fortran.html, where further explanation can
be found. The original source of these programs appears to be Using MPI by Gropp,
Lusk and Skjellum.

Serial

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
!
!
! PURPOSE
!
! This program use a monte c a r l o method to c a l c u l a t e p i
!
! . . Parameters . .
! npts = t o t a l number o f Monte Carlo po in t s
! xmin = lower bound f o r i n t e g r a t i o n reg ion
! xmax = upper bound f o r i n t e g r a t i o n reg ion
! . . S ca l a r s . .
! i = loop counter
! f = average value from summation
! sum = to t a l sum
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! randnum = random number generated from (0 ,1 ) uniform
! d i s t r i b u t i o n
! x = current Monte Carlo l o c a t i o n
! . . Arrays . .
!
! . . Vectors . .
!
! REFERENCES
! http :// chpc . wust l . edu/mpi−f o r t r an . html
! Gropp , Lusk and Skjel lum , ”Using MPI” MIT pre s s (1999)
!
! ACKNOWLEDGEMENTS
! The program below was modi f ied from one ava i l a b l e at the i n t e r n e t
! address in the r e f e r e n c e s . This i n t e r n e t address was l a s t checked
! on 30 March 2012
!
! ACCURACY
!
! ERROR INDICATORS AND WARNINGS
!
! FURTHER COMMENTS
!
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! External r ou t i n e s r equ i r ed
!
! External l i b r a r i e s r equ i r ed
! None
PROGRAM monte car lo

IMPLICIT NONE

INTEGER( kind=8) , PARAMETER : : npts = 1e10
REAL( kind=8) , PARAMETER : : xmin=0.0d0 , xmax=1.0d0
INTEGER( kind=8) : : i
REAL( kind=8) : : f , sum , randnum , x

DO i =1, npts
CALL random number ( randnum)
x = (xmax−xmin )∗ randnum + xmin
sum = sum + 4.0 d0 / (1 . 0 d0 + x∗∗2)

END DO
f = sum/npts
PRINT∗ , ’ PI c a l cu l a t ed with ’ , npts , ’ po in t s = ’ , f

STOP
END

Listing 4: A Fortran program which demonstrates parallelizm using MPI.

#de f i n e the compl ier
COMPILER = mpif90
# compi lat ion s e t t i ng s , opt imizat ion , p r e c i s i on , p a r a l l e l i z a t i o n

FLAGS = −O0

# l i b r a r i e s
LIBS =
# source l i s t f o r main program
SOURCES = mont e ca r l o s e r i a l . f90

t e s t : $ (SOURCES)
${COMPILER} −o mont e c a r l o s e r i a l $ (FLAGS) $ (SOURCES)

c l ean :
rm ∗ . o

c lobber :
rm mont e ca r l o s e r i a l

Listing 5: An example makefile for compiling the helloworld program in listing 7.

#!/ bin /bash
# the queue to be used .
#PBS −q shared
# sp e c i f y your p r o j e c t a l l o c a t i o n
#PBS −A mia122
# number o f nodes and number o f p r o c e s s o r s per node requested
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#PBS − l nodes=1:ppn=1
# requested Wall−c l ock time .
#PBS − l wa l l t ime =00:05:00
# name o f the standard out f i l e to be ”output− f i l e ” .
#PBS −o job output
# name o f the job
#PBS −N MCserial
# Email address to send a n o t i f i c a t i o n to , change ” youremai l ” appropr i a t e l y
#PBS −M youremail@umich . edu
# send a n o t i f i c a t i o n f o r job abort , begin and end
#PBS −m abe
#PBS −V
cd $PBS O WORKDIR #change to the working d i r e c t o r y
mpirun rsh −np 1 −h o s t f i l e $PBS NODEFILE mont e c a r l o s e r i a l

Listing 6: An example submission script for use on Trestles.

Parallel

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
!
!
! PURPOSE
!
! This program uses MPI to do a p a r a l l e l monte c a r l o c a l c u l a t i o n o f p i
!
! . . Parameters . .
! npts = t o t a l number o f Monte Carlo po in t s
! xmin = lower bound f o r i n t e g r a t i o n reg ion
! xmax = upper bound f o r i n t e g r a t i o n reg ion
! . . S ca l a r s . .
! mynpts = th i s p r o c e s s e s number o f Monte Carlo po in t s
! myid = proce s s id
! nprocs = t o t a l number o f MPI p ro c e s s e s
! i e r r = e r r o r code
! i = loop counter
! f = average value from summation
! sum = to t a l sum
! mysum = sum on th i s p roce s s
! randnum = random number generated from (0 ,1 ) uniform
! d i s t r i b u t i o n
! x = current Monte Carlo l o c a t i o n
! s t a r t = s imula t i on s t a r t time
! f i n i s h = s imula t i on end time
! . . Arrays . .
!
! . . Vectors . .
!
! REFERENCES
! http :// chpc . wust l . edu/mpi−f o r t r an . html
! Gropp , Lusk and Skjel lum , ”Using MPI” MIT pre s s (1999)
!
! ACKNOWLEDGEMENTS
! The program below was modi f ied from one ava i l a b l e at the i n t e r n e t
! address in the r e f e r e n c e s . This i n t e r n e t address was l a s t checked
! on 30 March 2012
!
! ACCURACY
!
! ERROR INDICATORS AND WARNINGS
!
! FURTHER COMMENTS
!
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! External r ou t i n e s r equ i r ed
!
! External l i b r a r i e s r equ i r ed
! MPI l i b r a r y

PROGRAM monte car lo mpi
USE MPI
IMPLICIT NONE
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INTEGER( kind=8) , PARAMETER : : npts = 1e10
REAL( kind=8) , PARAMETER : : xmin=0.0d0 , xmax=1.0d0
INTEGER( kind=8) : : mynpts
INTEGER( kind=4) : : i e r r , myid , nprocs
INTEGER( kind=8) : : i
REAL( kind=8) : : f , sum ,mysum, randnum
REAL( kind=8) : : x , s ta r t , f i n i s h

! I n i t i a l i z e MPI
CALL MPI INIT( i e r r )
CALL MPI COMM RANK(MPI COMMWORLD, myid , i e r r )
CALL MPI COMM SIZE(MPI COMMWORLD, nprocs , i e r r )
s t a r t=MPI WTIME()

! Ca lcu la te the number o f po in t s each MPI proce s s needs to generate
IF (myid . eq . 0) THEN

mynpts = npts − ( nprocs −1)∗( npts / nprocs )
ELSE

mynpts = npts / nprocs
ENDIF

! s e t i n i t i a l sum to zero
mysum = 0.0 d0

! use loop on l o c a l p roce s s to generate por t ion o f Monte Carlo i n t e g r a l
DO i =1,mynpts

CALL random number ( randnum)
x = (xmax−xmin )∗ randnum + xmin
mysum = mysum + 4.0 d0 / (1 . 0 d0 + x∗∗2)

ENDDO

! Do a reduct ion and sum the r e s u l t s from a l l p r o c e s s e s
CALL MPI REDUCE(mysum, sum ,1 ,MPI DOUBLE PRECISION,MPI SUM,&

0 ,MPI COMMWORLD, i e r r )
f i n i s h=MPI WTIME()

! Get one proce s s to output the r e s u l t and running time
IF (myid . eq . 0) THEN

f = sum/npts
PRINT∗ , ’ PI c a l cu l a t ed with ’ , npts , ’ po in t s = ’ , f
PRINT∗ , ’ Program took ’ , f i n i s h−s ta r t , ’ f o r Time stepp ing ’

ENDIF

CALL MPI FINALIZE( i e r r )

STOP
END PROGRAM

Listing 7: A Fortran program which demonstrates parallelizm using MPI.

#de f i n e the compl ier
COMPILER = mpif90
# compi lat ion s e t t i ng s , opt imizat ion , p r e c i s i on , p a r a l l e l i z a t i o n

FLAGS = −O0

# l i b r a r i e s
LIBS =
# source l i s t f o r main program
SOURCES = mont e ca r l opa r a l l e l . f90

t e s t : $ (SOURCES)
${COMPILER} −o mont e ca r l opa ra l l e l $ (FLAGS) $ (SOURCES)

c l ean :
rm ∗ . o

c lobber :
rm mont e ca r l opa r a l l e l

Listing 8: An example makefile for compiling the helloworld program in listing 7.

#!/ bin /bash
# the queue to be used .
#PBS −q normal
# sp e c i f y your p r o j e c t a l l o c a t i o n
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#PBS −A mia122
# number o f nodes and number o f p r o c e s s o r s per node requested
#PBS − l nodes=1:ppn=32
# requested Wall−c l ock time .
#PBS − l wa l l t ime =00:05:00
# name o f the standard out f i l e to be ”output− f i l e ” .
#PBS −o job output
# name o f the job , you may want to change t h i s so i t i s unique to you
#PBS −N MPI MCPARALLEL
# Email address to send a n o t i f i c a t i o n to , change ” youremai l ” appropr i a t e l y
#PBS −M youremail@umich . edu
# send a n o t i f i c a t i o n f o r job abort , begin and end
#PBS −m abe
#PBS −V

# change to the job submiss ion d i r e c t o r y
cd $PBS O WORKDIR
# Run the job
mpirun rsh −np 32 −h o s t f i l e $PBS NODEFILE mont e ca r l opa ra l l e l

Listing 9: An example submission script for use on Trestles.

Homework Question 5
a) Explain why using Monte Carlo to evaluate∫ 1

0

1

1 + x2
dx

allows you to find π and, in your own words, explain what the serial and parallel
programs do.

b) Find the time it takes to run the Parallel Monte Carlo program on 32, 64, 128,
256 and 512 cores.

Bonus Questions

a) Use a parallel Monte Carlo integration program to evaluate∫∫
x2 + y6 + exp(xy) cos(y exp(x))dA

over the unit circle.

b) Use a parallel Monte Carlo integration program to approximate the volume of

the ellipsoid x2

9
+ y2

4
+ z2

1
= 1.

c) Write parallel programs to find the volume of the 4 dimensional sphere

1 ≥
4∑

i=1

x2i .

Try both Monte Carlo and Riemann sum techniques.
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